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Abstract

Video Grounding (VG) aims to locate the desired segment
from a video given a sentence query. Recent studies have
found that current VG models are prone to over-rely the
groundtruth moment annotation distribution biases in the
training set. To discourage the standard VG model’s behav-
ior of exploiting such temporal annotation biases and im-
prove the model generalization ability, we propose multi-
ple negative augmentations in a hierarchical way, including
cross-video augmentations from clip-/video-level, and self-
shuffled augmentations with masks. These augmentations can
effectively diversify the data distribution so that the model
can make more reasonable predictions instead of merely fit-
ting the temporal biases. However, directly adopting such
data augmentation strategy may inevitably carry some noise
shown in our cases, since not all of the handcrafted augmen-
tations are semantically irrelevant to the groundtruth video.
To further denoise and improve the grounding accuracy, we
design a multi-stage curriculum strategy to adaptively train
the standard VG model from easy to hard negative augmen-
tations. Experiments on newly collected Charades-CD and
ActivityNet-CD datasets demonstrate our proposed strategy
can improve the performance of the base model on both i.i.d
and o.0.d scenarios.

Introduction

Video grounding (VG), one of the video-and-language tasks
that seeks to determine the start and end timestamps of a
natural language-described segment (also named moment)
from an untrimmed video, has attracted increasing interests
of the multimedia community over the past few years (Gao
et al. 2017; Lan et al. 2021). As shown in Figure 1(a),
taking a video and a descriptive sentence as inputs, a VG
model needs to return the temporal locations of the tar-
get moment referring to the sentence query. Compared to
other natural language-based video understanding tasks like
video question answering and video captioning, the ground-
ing accuracy in VG is a more intuitive metric to evaluate
the video-sentence matching from the level of semantics.
Therefore, VG has been widely investigated these years and
achieved promising grounding results by various state-of-
the-art (SOTA) deep models.
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Figure 1: (a): VG task definition. Given a sentence, a se-
mantically corresponding video segment should be tempo-
rally located in the video. (b): Conceptual illustration of our
data augmentation-based debiasing strategy for VG. Our de-
signed negative samples (shown in red dots) are able to bal-
ance the biased moment annotation distribution of positive
samples (shown in black dots) with fair negative treatment
to moment candidates at more diverse locations.

However, recent studies (Otani et al. 2020; Yuan et al.
2021) start to doubt whether the performance gains of SOTA
VG models come from more powerful cross-modal semantic
matching ability rather than exploiting some kind of shorz-
cuts, e.g., the temporal annotation distribution biases in the
training set. Except some early two-stage VG models (Gao
et al. 2017; Hendricks et al. 2017) that individually match
the pre-cut video moment candidates with the query, the ma-
jority of advanced VG methods (Chen et al. 2018; Yuan et al.
2019; Zhang et al. 2020) resort to modeling the temporal re-
lations within the video by encoding the video units (clips or
moments) in the whole video context/sequence, which will
embed the temporal location information in the video clip/-
moment features and these temporal location clues will in-
evitably influence the model learning procedure. When the
model gets no clues on cross-modal matching, or only un-
derstands one side of these two modalities, it may leverage



the location priors to ‘take a guess’ of the target moment. If
the temporally annotated labels in the training set are unbal-
anced with obvious distribution biases, it is easy for those
models that implicitly embed the temporal signals and ex-
ploit such biases to perform temporal predictions. To better
demonstrate the above problem, Otani et al. 2020 firstly re-
port the dataset bias issue by conducting groups of experi-
ments, and Yuan et al. 2021 further design new evaluation
protocols to assess the generalization ability of SOTA mod-
els.

To discourage the standard VG model’s behavior of ex-
ploiting such temporal annotation biases and improve the
model generalization ability, we present a simple yet effec-
tive Curriculum Multi-Negative Augmentation (NA) frame-
work. Our motivation of designing such a curriculum Multi-
NA framework comes from the following observation: even
given a sentence query and a video semantically unrelated to
it as inputs, a biased model would still unreasonably produce
higher grounding confidence scores for those video clips/-
moments whose temporal positions appear more frequently
among the training set’s ground-truth annotations. We hope
to debias the model by forcing it to fairly output low confi-
dence scores for these video units that have no semantic rel-
evance to the sentence query, and therefore make the model
focus more on learning semantic matching relationships be-
tween videos and sentences rather than fitting temporal lo-
cation biases in the dataset. Therefore, we propose multiple
negative augmentations in a hierarchical way to enrich the
training set’s temporal label distribution.

Specifically, our proposed Multi-NA strategy mainly fo-
cuses on creating some ‘pseudo’ negative video samples that
have no or weak semantic relations with the given sentence
query, which includes: (i) clip-level cross-video NA sam-
ples composed by the clips randomly picked up from other
videos, (i) video-level cross-video NA samples that directly
replace themselves with other videos, and (iii) self-shuffled
NA samples with masks obtained by shuffling the positive
video itself and setting a proportion of positions to zero at
feature level. As illustrated in Figure 1(b), these NA sam-
ples added in the model training procedure can balance the
moment annotation distribution, and our objective function
will encourage the model to give lower grounding confi-
dence scores to those video moments which have weak or no
semantic relevance to the sentence query. Therefore, these
augmentations can effectively diversify the temporal anno-
tation distribution and help the model make more reasonable
predictions rather than fit the temporal biases.

However, not all of the above negative video samples are
equally semantic-irrelevant to the positive video (as well as
the corresponding sentence query). Actually, the difficulty of
distinguishing the negative attributes of our created ‘pseudo’
video samples is from easy to hard. For example, both the
temporal continuity and semantic relevance of the ‘pseudo’
videos from our first clip-level cross-video NA strategy are
broken, and it is easy for the model to determine such videos
as negative. However, the synthesized videos from the third
self-shuffled NA strategy are harder to distinguish, since the
clips in these videos are from the positive videos and they
are still highly semantically relevant to the sentence query.

The shuffling and masking operation can only break tem-
poral continuity and logic in the original video sequence.
Therefore, if we input the hard negative samples generated
from the third NA strategy in the early training stage, it will
inevitably confuse the model and bring some noise. Inspired
by the automatic denoising characteristics (Wang, Chen, and
Zhu 2022) of curriculum learning, in our scenario, we de-
sign a multi-stage curriculum strategy to adaptively train the
VG model with negative augmentations gradually from easy
(clean) to hard (noisy) samples, which guides the model to
better optima with cleaner gradients in the early training pro-
cess (Bengio et al. 2009), so that the VG model will not get
confused by those noisy data.

To prove the effectiveness of our method, we con-
duct experiments on the newly collected Charades-CD and
ActivityNet-CD datasets (Yuan et al. 2021). The experimen-
tal results show that our proposed Curriculum Multi-NA
strategy can effectively debias the base model with signif-
icant improvements on both i.i.d and o.0.d scenarios. Our
contribution can be summarized as follows':

* We hierarchically propose multiple VG-specific nega-
tive augmentations (Multi-NA) for the debiased video
grounding problem, from the perspective of enriching the
temporal label distribution.

* We propose a multi-stage curriculum VG training strat-
egy for the hierarchically augmented samples, to allevi-
ate the impact of noise contained in the negative augmen-
tations.

» Experimental results show that our proposed Curriculum
Multi-NA strategy can effectively debias the base model
with significant improvements on both i.i.d and 0.0.d sce-
narios of Charades-CD and ActivityNet-CD datasets.

Related Work
Video Grounding

Video grounding aims to retrieve a desired video segment
(or moment) from a given video according to a sentence
query. Therefore, a VG model needs to model the cross-
modal relation and find the semantic correspondence be-
tween the visual and natural language inputs. Since the task
was proposed by Gao et al. 2017, a variety of deep VG
models have attempted to capture the cross-modal semantic
matching relationships and predict the target moment loca-
tions more and more accurately and efficiently. These VG
models can be basically grouped into two categories, i.e.,
proposal-based and proposal-free methods. The proposal-
based methods aim to obtain the matching scores of seg-
ment candidate proposals and choose the proposals with top
scores as predictions (Gao et al. 2017; Hendricks et al. 2017;
Chen et al. 2018; Yuan et al. 2019; Zhang et al. 2020), while
the proposal-free methods take the start (end) timestamps
as supervision signals and directly output the target loca-
tions without the proposal generation process (Yuan, Mei,
and Zhu 2019; Ghosh et al. 2019; Zeng et al. 2020). Since

'Our codes are available at https:/github.com/rubylan/Curri-
MultiNA
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Figure 2: The overview of our proposed Curriculum Multi-NA framework. We choose a proposal-based method as the base
model, add three kinds of negative data augmentations against the positive video to the whole training procedure, and encourage
the proposals generated by those negative videos to fairly output low confidence scores (shown on the left). Since some of the
augmented videos may have semantic relations with the original video, such noisy data would disturb the training at the early
stage. Therefore, we adopt a multi-stage curriculum strategy to gradually add the negative samples from easy to hard for
adaptive training (shown on the right). The curriculum strategy can effectively remove the noise brought by the relatively hard
(noisy) negative samples and further improve the grounding accuracy.

the acquirement of moment-level temporal annotations is
labor-intensive, a great number of weakly supervised ap-
proaches (Mithun, Paul, and Roy-Chowdhury 2019; Duan
et al. 2018) that have no need to access such temporal an-
notations at the training stage have appeared. These weakly
supervised methods mainly leverage the semantic alignment
of groundtruth video-sentence pairs to yield accurate loca-
tions, for example, some of them (Song et al. 2020) attempt
to utilize the reconstruction loss that is produced by gener-
ating captions for video moment proposals to supervise the
training.

Temporal Annotation Biases in VG

The temporal bias issue has been initially proposed by
Otani et al. 2020. Afterwards, various efforts attempt to ad-
dress it from both improvements of benchmarks and mod-
els. For example, as for benchmarks, to disentangle the ef-
fects brought by temporally-biased datasets and evaluate
the model generalization more reliably, Yuan et al. 2021
re-split the commonly used benchmark datasets to conduct
the out-of-distribution test with a test set that has differ-
ent groundtruth annotation distribution with the training set.
Soldan et al. 2022 present a large-scale MAD dataset that is

able to alleviate the identified temporal biases with consider-
ably longer videos from movies and a much greater amount
of sentence samples from audio descriptions in movies. As
for models, various debiased approaches are specifically de-
signed and proposed for alleviating the temporal bias is-
sue in VG. Inspired by the visual question answering do-
main (Agrawal et al. 2018), some employ the uni-modal
branch to capture the biases and integrate it into the stan-
dard branch in an ensemble way (Zhang et al. 2021). Some
other methods attempt to view the VG problem from the per-
spective of causality and debias the base model with causal
intervention (Yang et al. 2021; Lan et al. 2022; Bao and Mu
2022). To the best of our knowledge, our method is the first
to adopt curriculum learning-based data augmentation for
debiased video grounding, which is orthogonal to existing
methods.

Negative Sample Augmentations in VG

Introducing additional negative samples as a way of data
augmentation has been proven to be effective in many do-
mains (Li et al. 2022a; Zhang et al. 2022a), which also bene-
fits the problem of video grounding (Luo et al. 2021; Wang,
Chen, and Jiang 2021; Nan et al. 2021; Ding et al. 2021;



Zheng et al. 2022; Li et al. 2022b), especially in the weakly
supervised setting. It becomes a necessity to exploit the neg-
ative moment/query samples for contrastive learning-based
training to better learn the cross-modal semantic alignment
relations with no access to fine-grained temporal annota-
tions. The negative augmentations in our method are funda-
mentally different from these previous studies in two folds:
1) Objects to be augmented are different. The augmentation
of previous works is mainly operated in moment-level (Nan
et al. 2021; Ding et al. 2021) or query-level (Zheng et al.
2022), while our method generates the negative augmenta-
tion in video-level; ii) Levels of the model where the neg-
ative augmentations are projected and optimized are differ-
ent: for previous works, the negative samples are accompa-
nied with the positive samples to compose a triplet for con-
trastive training in the common feature space. However, in
our work, the effects of negative augmentations will happen
at the inception level near the output layer.

Curriculum Learning

The concept of curriculum learning (CL) is firstly proposed
by Bengio et al. 2009. Inspired by the easy-to-hard learn-
ing paradigms of human beings, CL likewise trains the deep
learning model on the easier subset of data at the beginning,
and then gradually increases the difficulty of data subset, un-
til the entire training dataset is reached. Recent studies have
shown the power of CL (Zhou et al. 2022a) as a task-free
training paradigm applying to a wide range of specific prob-
lems (Chen et al. 2021b; Zhou et al. 2022b; Zhang et al.
2022b), e.g., image classification (Gong et al. 2016; Guo
et al. 2018), machine translation (Tay et al. 2019; Kumar
et al. 2019), and recommendation (Chen et al. 2021a).

According to the systematic review on CL (Wang, Chen,
and Zhu 2021), given the common scheme of CL, it should
be properly instantiated into practices by defining a diffi-
culty measurer and a training scheduler for a specific task.
Both these two components could be either pre-defined (stat-
ically fixed before training), or automatic (i.e., dynamically
adjusted during training). Furthermore, CL should be used
either to guide the training towards better parametric-space
regions in the way of model optimization, or to denoise
through concentrating more on high-confidence areas of data
distributions. The curriculum design in our framework is pri-
marily out of the second motivation, i.e., due to the noisy
data generated by the negative augmentation policies, we
present a simple yet effective pre-defined multi-stage cur-
riculum strategy to help denoise and improve the robust-
ness and generalizability of the trained model. The CL-
driven debiasing solution has also been successfully applied
in VQA (Lao et al. 2021).

Methodology

The overview of our proposed Curriculum Multi-NA frame-
work is shown in Figure 2. For clearer presentation, we will
first take a quick review on the VG problem formulation and
the base model which is of necessity but not our main contri-
bution. Afterwards, the VG-specific augmentation methods
for three kinds of negative samples are introduced followed

with the overall optimization functions, which achieves the
goal of debiasing. Then our multi-stage curriculum strategy
is presented to further denoise the training with noisy aug-
mented samples.

Problem Formulation

Given a video V and a sentence query S, a VG model will
learn a projection function fy(V,S) = 7,, which identifies
the start and end timestamps in V' semantically correspond-
ing to sentence .S. During the training stage, we utilize the
groundtruth annotation 74 to optimize the VG model.

Base Model

We follow the work by Zhang et al. 2020 as the whole
grounding pipeline shown in the left part of Figure 2.
The core design of their grounding method is to represent
the candidate moments with a 2D temporal feature map
€ [O,l]N e XN CXd“, where each position of 2D coordinates
(4,5), 1,7 € {1,2,---, N.} represents one candidate mo-
ment that starts at the i-th and ends at the j-th temporal unit.
The 2D temporal map is able to model the adjacent relations
of moments while it would also embed the position infor-
mation unavoidably. After feeding the 2D moment features
and the query feature into the cross-modal fusion module
followed by the temporal convolution layer, we can obtain a
2D score map M € [0,11V<*Ne that describes the moment-
to-text semantic relevance.

Negative Augmentations

To alleviate the temporal bias issue, we provide three differ-
ent ways to generate ‘pseudo’ negative video samples. The
negative augmentations (NA) can obviously change the data
distribution of the training set and effectively penalize the
behaviours of biased prediction with the help of the non-
matched query-video pairs. Therefore, those negative aug-
mentations are able to force the VG model to truly under-
stand the multimodal inputs and learn the cross-modal se-
mantic alignment. In the following, these three negative aug-
mentations against a given video-sentence pair (V*, S%) will
be introduced.

Clip-level Cross-video NA. Suppose each video V is
composed by a sequence of T, video clips, for example,
Vi = {c,c,...,c }. To generate the clip-level cross-
video NA sample Vi~ for V¢, we synthesize it in a clip-
by-clip manner, i.e., randomly select a video VP* other than
V% in its mini-batch (with batch size B), and then take the
k-th video clip ¢b* in VP* as the k-th clip of V..~. As such,
the synthesized negative ‘pseudo’ video can be formulated
as:

‘/cic7 = {Czk}zuzla Pr € {1727 aB} andpk # i. (1)

Since V!~ is composed of randomly selected clips from
other videos, it is not able to represent a continuing sequence
of interactive activities, i.e., the semantics behind it are lim-
ited.



Algorithm 1: Multi-stage Curriculum Process

Input: negative augmentation function Gycc e 53 (-), the
standard VG model fy, original training set S,, aug-
mented training set S, training stage update time 7, and
total training step number 7}, 4.

Qutput: optimized model fy
Initialization: S, < {(v«, 8, Tx)}, S, <+ 0
fort=1,--- T4, do

{When training stage 1 is reached.}

if t = T} then
V.. < Gee(V, N2, based on Equation (1)
So + S, U {(’U;C*, Sy T¢)}

end if

{When training stage 2 is reached. }

ift = Tg then
Ve < Gue(V, N,.) based on Equation (2)
5?o 8o Up {(Vgess 82, 79)

end if

{When training stage 3 is reached.}

if t = T3 then
V.5 < Gss(V, N,) based on Equation (3)
SO A SO UO {(U;s*a Sxs T¢)}

end if

{Update the gradients for optimization. }

0 < train(fg, A, {507 SAO})

end for

Video-level Cross-video NA. The second negative aug-
mentation is to randomly pick up another video V* (k #
1) in the mini-batch:

Voe =V k#i. )
Compared to the clip-level cross-video augmented sample
(V27), the video-level negative sample V), processes cer-
tain semantic information, which is more likely to be se-

mantically relevant to the positive video V' compared to the
clip-level ones, thus more likely to bring noise for training.

Self-Shuffled NA. with Masks. The third NA strategy is
to generate the negative video sample by the positive video
itself. Firstly, the original positive video will be temporally
shuffled in its clips. Then, we will generate a feature map
mask, where some feature dimensions of some video clips
will be randomly set to zero controlled by a mask ratio o €
(0,1):

V)5 = Shuffle(V*) ® Mask(a). ©)
The self-generated negative sample should be highly seman-
tically similar with the original video in the feature space
compared with those cross-video generated ones. However,
its temporal continuity is totally damaged by the shuffling
operation and the complete semantic information is partially
hidden by subsequent masking so that this kind of synthe-
sized sample can be viewed as negative as well.

Objective Function

The optimization objective consists of two parts, the loss for
the original positive samples and the loss for our augmented

ones.
For the original positive samples (v, S«, Ty« ), We adopt
the same loss function as Zhang et al. 2020:

£+ - Ebce(M+a Mgt) ) (4)

where we compute the binary cross-entropy loss between
the predicted 2D score M and the groundtruth M,; of the
scaled temporal IoU.

For all the negative samples (v, , s, Ty ), since the nega-
tive video v~ is semantically irrelevant to the sentence query
s, we uniformly assign them with the empty groundtruth la-
bel, denoted as 75, which means that our objective is to en-
courage the model to fairly predict the relevance scores of
all candidate moments as zero. To achieve this, we design
the negative loss function that can decrease the unreasonable
relevance scores simply using the L1 distance loss:

Egcc,vc,ss} =L (Mgcc,vc,ss}’ T¢) ’ o)

Then we further adopt the hype-parameters A1, A2 and As
to balance the losses obtained by positive and negative sam-
ples:

L=LT+N ML+ ML, + XL, (6)

and A(q 7 3y is able to control the curriculum process as well.

Multi-stage Curriculum Strategy

As discussed above, these negative augmentations are hi-
erarchically generated from different granularities (clip- or
video-level) or sources (other videos or the positive video it-
self) so the maintained semantic relevance to the positive
video differs as well. Generally, the self-generated video
(i.e., Vi) should be more similar to the original video
than the cross-video generated ones (i.e., V{Z’UC}) since it
keeps the same domain scenes with the original one. As for
those two kinds of cross-video generated videos, the com-
plete video-level replacement from a single video has more
chance to maintain the overlapped semantics with the orig-
inal one than the clip-level synthesized one from multiple
video sources.

When we train the model with enhancement of negative
samples that share some semantics with the original video,
it will get harder for the model to differentiate the outcomes
of both negative and positive ones. Note that the labels for
the positive ones are given by the groundtruth, but the la-
bels for the negative ones are empty. Similar input semantics
but totally different labels will confuse the model. There-
fore, these negative augmentations unavoidably bring noise
for training despite playing a positive role of diversifying
the data distribution. Motivated by the power of curriculum
learning for denoising, we design a multi-stage curriculum
process to adaptively train the model by gradually adding
those negative augmentations stage by stage. The detailed
pipeline is described at Algorithm 1.

Experiments
Evaluation Protocols

To better validate whether our proposed method could alle-
viate the over-reliance on dataset biases, we adopt the eval-



Charades-CD

ActivityNet-CD

Models dR@1,IoU=0.3 dR@1,JoU=0.5 dR@1,IoU=0.7 dR@1,JoU=0.3 dR@1,loU=0.5 dR@1,loU=0.7
ii.d o.o.d ii.d o.o.d 1.i.d o.0.d ii.d o.0.d ii.d o.0.d 1.i.d o.0.d
CTRL 42.65 4497 29.80 30.73 11.86 11.97 19.42  15.68 11.27 7.89 4.29 2.53
ACRN 4750 44.69 3177 30.03 12.93 11.89 20.06 16.06 11.57 7.58 441 2.48
ABLR 5226 4462 41.13 3157 2350 11.38 46.86 3345 3545 20.88 20.57 10.03
SCDM 58.14 5238 4736 41.60 30.79 2222 4644 3156 35.15 19.14 22.04 9.31
DRN 51.35 4045 4191 3043 2674 1591 4892 36.86 3927 2515 2571 14.33
TSP-PRL 4644 3193 3543 19.37 17.01 6.20 4493  29.61 33.93 16.63 19.50 7.43
2D-TAN 5371 4345 4648 28.18 28.18 13.73 49.18 30.86 40.87 18.86  28.95 9.77
Ours 64.21 5221 53.82 3986 3447 2138 4991 3232 41.67 20.78 2882 11.03

Table 1: Overall performance (%) comparisons with other VG models (best results are in bold and second in underline).

uation protocols proposed by Yuan et al. 2021 with two re-
organized datasets, which can evaluate the model’s gener-
alization ability with out-of-distribution test using a test set
(i.e., test-ood) that has a totally different moment annotation
distribution against the train/val/test-iid sets. More dataset
details are as follows:

Charades-CD. It is re-organized from Charades-STA
dataset (Gao et al. 2017) with an average video length of
30 seconds. The numbers of videos in train/val/test-iid/test-
ood splits are 4,564/333/333/1, 442, and the numbers of
video-query pairs are 11,071/859/823/3, 375 respectively.
ActivityNet-CD. It is built upon ActivityNet Captions
dataset (Krishna et al. 2017). The videos contain the daily
activities and are around 180 seconds on average. The
numbers of videos in train/valltest-iid/test-ood splits are
10,984 /746/746/2,450, and the numbers of video-query
pairs are 51,415/3,521/3,443/13, 578 respectively.
Metrics. As for evaluation, we adopt the commonly used
metric R@n,JoU=m (Gao et al. 2017). It returns the pro-
portion of positive samples which have at least one moment
out of top n retrieved moments whose temporal IoU score is
larger than m with the groundtruth moment. We also report
the results with the new metric of dR@n,JoU=m (Yuan et al.
2021) that further discounts the recall values of R @n,loU=m
based on temporal distances, which is more reliable under
small IoU thresholds.

Implementation Details

As for the training strategy setting, we trained 30/20 (i.e.,
Tinaz) epochs for Charades-CD/ActivityNet-CD and report
results of the epoch whose test-iid set performs the best with
metric R@1,IoU=0.7. The batch sizes and learning rates
were set to 64/32 and 0.0005/0.0001, respectively. A(1 23y
in £ were all set to 5.0 for Charades-CD, and set to 15.0 for
ActivityNet-CD. We adaptively trained the model with the
multi-stage curriculum process and set training stage update
time 77, T, and T35 to 3/7/18 and 2/5/13, respectively.

As for the model architecture setting, to implement the
Multi-NA strategy, we set the mask ratio o to 0.55 and
the numbers of per-sample generated samples for each NA
type (i.e., N{;C)UC’SS}) to 1 on both datasets. Other hyper-
parameters of the architecture (e.g., query hidden size, tem-
poral convolutional layer number or kernel size) were the

same as the original paper (Zhang et al. 2020). To fairly
compare with other VG models, we also followed Yuan et
al. (Yuan et al. 2021) to extract I3D (Carreira and Zisserman
2017) video features for Charades-CD and C3D (Tran et al.
2015) video features for Activity-CD and encode the sen-
tence with GloVe (Pennington, Socher, and Manning 2014).

Experimental Results

We present our evaluation results on both test-iid and test-
ood sets with the metrics dR@1,IoU={0.3,0.5,0.7} in Ta-
ble 1. The results of other VG methods with the new bench-
mark are originally reported in Yuan er al. 2021, includ-
ing CTRL (Gao et al. 2017), ACRN (Liu et al. 2018),
ABLR (Yuan, Mei, and Zhu 2019), SCDM (Yuan et al.
2019), DRN (Zeng et al. 2020), TSP-PRL (Wu et al. 2020)
and 2D-TAN (Zhang et al. 2020).

After comparing the grounding performance of our
method with that of 2D-TAN, it can be concluded that
our proposed Curriculum Multi-NA can improve the base
model with significant performance gains. More observa-
tions based on the results of both datasets are shown as fol-
lows:

* Performance improvements upon the base model (2D-
TAN) after adopting our proposed Curriculum Multi-
NA are significant on both i.i.d and o.0.d scenarios of
Charades-CD, e.g., with recall point gains of 6.29/7.65
under the most challenging metric dR@1,loU=0.7,
which demonstrates that our NA strategy can effectively
enrich the label space of the dataset for more accurate
and reasonable grounding.

* The improvements upon the base model on ActivityNet
dataset are not significant as much as Charades-CD,
which may be due to that the videos from Activity-CD
contain more complicated interactive activities, the ben-
efits of distinguishing our synthesized negative videos is
not adequate for cross-modal semantic matching under
such a more challenging phenomenon.

* Itis observed that our strategy achieves 1.96% (IID) and
10.18% (OOD) improvements on dR@ 1,IoU=0.5 over
the base model and reduces the IID-OOD performance
gap. Thus the model generalization ability increases ac-
cordingly after adopting our strategy.



No experimental settings R@1,JoU=0.5 R@1,JoU=0.7 R@5,]IoU=0.5 R@5,IoU=0.7
wicc NA.  w/ve NA.  w/ssNA. w/curriculum  ii.d o.o.d iid o.0.d iid o.0.d iid o.0.d

1 49.33 39.50 26.73 17.82 85.05 79.42 5456 40.78
2 v 50.67 40.87 27.70 19.28 87.61 79.54 5759 44.13
3 v 5723 4196 33.54 20.55 89.55 81.88 59.17 45.34
4 v 4775 37.01 28.19 17.59 8433 76.81 54.68 41.76
5 v v v 5577 4339 3560 2126 8943 83.19 61.85 44.69
6 v v v v 58.57 4475 3633 2298 8991 83.07 59.66 47.78

Table 2: Evaluation results (%) on Charades-CD to investigate the effects of NA and curriculum strategies.
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Figure 3: The qualitative analysis of VG samples from the fest-ood set of Charades-CD.

We further compare our evaluation results with other
VG models and find that even though the performance of
the base model is behind SCDM and DRN, our method
can achieve competitive results with SOTA models on both
datasets. This observation proves that our debiasing strategy
is able to improve the grounding results and make up short-
comings of the model design from another perspective.

Ablation Studies

To further validate the contributions of each component in
our proposed Curriculum Multi-NA strategy, we conduct
more studies and report the results in Table 2, based on
which we have the following observations:

e It is observed that each type of NA (c.f., No.2 —
4) can achieve better grounding results upon the base
model (c.f., No.1), which shows the proposed augmen-
tation strategy for debiasing can effectively promote the
grounding accuracy from the perspective of enriching the
label space.

It is worth noting that the only video-level augmentation
works the best (c.f., No.3) with the largest performance
improvement compared to other two clip-level augmen-
tations (c.f., No.2 and No.4). The possible reason is that
the video-level augmentation can maintain the temporal
semantic information in video contents so distinguishing
this kind of NA from the positive video is more useful for
the model to capture the visual semantics.

We can also observe that our designed curriculum strat-
egy is able to further promote the grounding results com-

paring the evaluation results of No.5 and No.6, where
No.5 fixes A during the whole training process. The re-
sults show that the multi-stage curriculum strategy for
denoising can further bring performance gains for more
accurate grounding.

Qualitative Results

We report the qualitative results of VG samples whose tem-
poral locations appear rarely in the training i.i.d set (c.f.,
Figure 3). For these VG samples, the model is not able to
exploit the location bias to accurately ground the sentence
query. It can be shown that our Curriculum Multi-NA frame-
work can achieve better grounding results compared to the
base model. The base model seems to be affected by the an-
notation distribution biases, having the tendency to predict
the locations from the area of higher density, while our pro-
posed framework is able to perform the less biased predic-
tion that has large IoU with the groundtruth moment.

Conclusion and Future Work

In this paper, we present a curriculum learning-driven data
augmentation-based debiasing method to alleviate the tem-
poral annotation bias issue in VG. The VG-specific data aug-
mentation strategy can diversify its data distribution in the
video-sentence label space while the proposed curriculum
strategy can reduce the effects brought by the augmented
noisy data samples. For the future work, we hope to explore
the possibility of adopting such debiasing strategy in other
related domains like video question answering or temporal
action localization in videos.
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